Application of \boldsymbol{t}-2-benzoyl- \boldsymbol{t}-5-phenylcyclohexane-r-1-carboxylic acid for the preparation of saturated isoindole-fused heterocycles \dagger

Géza Stájer, ${ }^{*} \ddagger^{a}$ Angela E. Szabó, ${ }^{a}$ Ferenc Csende, ${ }^{a}$ Gyula Argay ${ }^{b}$ and Pál Sohár ${ }^{* c}$
${ }^{a}$ Institute of Pharmaceutical Chemistry, University of Szeged, P.O. Box 121, H-6701 Szeged, Hungary. E-mail: Stajer@pharma.szote.u-szeged.hu; Fax: (62)545-705
${ }^{b}$ Central Research Institute for Chemistry, Hungarian Academy of Sciences, P.O. Box 17, H-1525 Budapest-114, Hungary
${ }^{c}$ Research Group for Structural Chemistry and Spectroscopy, Hungarian Academy of SciencesEötvös Loránd University and Department of General and Inorganic Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest-112, Hungary

2

Received (in Cambridge, UK) 10th August 2001, Accepted 7th January 2002
First published as an Advance Article on the web 4th February 2002

Abstract

t-2-Benzoyl-t-5-phenylcyclohexane-r-1-carboxylic acid $\mathbf{1}$ reacts with cis-2-aminocyclohexanemethanol to give the saturated cis-isoindolo[2,1-a][3,1]benzoxazine 2. Reaction of $\mathbf{1}$ with trans-2-aminocyclohex-4-enemethanol yields three diastereomeric isoindolo derivatives 3a-c. Cyclization of $\mathbf{1}$ with 1,3-diaminopropane results in a diastereomeric mixture of cis-pyrimido[1,2-a]isoindolones $\mathbf{4 a}, \mathbf{b}$. With di-endo-norbornane aminoalcohol, $\mathbf{1}$ reacts to yield a mixture of cis- and trans-annelated diastereomers 5 and $\mathbf{6}$. In its reactions with di-exo-norbornane and norbornene aminoalcohols, $\mathbf{1}$ isomerizes to give cis-condensed isoindolo derivatives $\mathbf{7 - 1 0}$. After isolation, the structures were established by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, with up-to-date measuring techniques such as NOEDIF, DEPT, HMQC, 2D-NOESY, 2D-COSY and HMBC and, for 10, X-ray measurements. The results show that, with two exceptions, the trans acid $\mathbf{1}$ undergoes isomerization to give cis-condensed products.

Introduction

The AlCl_{3}-catalysed reaction of cis-cyclohex-4-ene-1,2-dicarboxylic anhydride (Acros $15.972-0010$) with benzene results in t-5-phenyl-c-2-benzoylcyclohexane- r-1-carboxylic acid, which, by treatment with NaOH , is readily isomerized to the transaroyl acid 1. ${ }^{1}$ As a continuation of our systematic stereochemical studies on saturated isoindolones containing two condensed hetero rings, ${ }^{2-4}$ we have now applied $\mathbf{1}$ to synthesize lactam-type compounds and compare them with the compounds prepared from the cis-aroyl acid. ${ }^{5}$ The pharmacological potential of the target compounds is likewise of interest, because some of the corresponding aromatic analogues ${ }^{6,7}$ display anorectic activity and several drugs with related structures are applied in therapy. ${ }^{8}$ Since the introduction of chiral lactams prepared from optically pure aminoalcohols and γ oxoacids for the asymmetric construction of quaternary carbon centres, this group of compounds has been subjected to intensive investigations. ${ }^{9,10}$

Results

The trans-aroylcyclohexanecarboxylic acid $\mathbf{1}$ was cyclized with cis-2-aminocyclohexanemethanol to the saturated cis-isoindolo-[2,1-a][3,1]benzoxazine 2 (Scheme 1), which was previously synthesized in a similar reaction of the trans-phenyl-cis-benzoylcyclohexane-1-carboxylic acid. ${ }^{5}$ In its reaction with trans-2-aminocyclohex-4-enemethanol, 1 either changes or preserves its starting structure to give the isomeric isoindolobenzoxazines 3a-c, containing trans $C-D$ rings. With 1,3diaminopropane, the tricyclic diastereomers $\mathbf{4 a}, \mathbf{b}$ are formed
\dagger Dedicated to Professor András Messmer on the occasion of his 80th birthday.
\ddagger Corresponding authors: G. Stájer (synthesis), P. Sohár (spectroscopy).
and separated. Such derivatives have already been prepared from the corresponding trans-phenyl-substituted-cis-2-benzoyl-cyclohexane-1-carboxylic acid with 1,3 -diaminopropane. ${ }^{5}$ The di-endo- or the di-exo-3-aminobicyclo[2.2.1]heptane-2-methanols or di-exo-heptene analogue each yield mixtures of two isomeric methylene-bridged isoindolo[2,1-a][3,1]benzoxazines $\mathbf{5 , 6}$ or $\mathbf{7 , 8} \mathbf{8} \mathbf{9}, \mathbf{1 0}$. As a mechanism, the formation of an azomethine following cyclization to hydroxylactam and then hetero ring closure by cyclodehydration can be postulated.

The results show that $t-5$-phenyl- $t-2$-benzoylcyclohexane- r-1carboxylic acid $\mathbf{1}$ readily changes its configuration to cis in these reactions; thus, the configurations of the starting compound and the products often differ. cis \rightarrow trans Isomerization in the presence of acids or bases or on heating has been reported to occur in cyclohexane derivatives ${ }^{11}$ and it has also been observed in analogous compounds. ${ }^{3,12}$ Similarly, cis \rightarrow trans isomerizations have been described for the intramolecular transacylation of the cyclohexane-condensed azetidinones, ${ }^{13}$ while a trans \rightarrow cis isomerization occurs in the thermal cyclization of the cis-ethoxycarbonylcyclohexylureas to cyclohexanecondensed dihydrouracils. ${ }^{14}$ On enolization of the aroyl group in the presence of basic reagents, e.g. diamines or aminoalcohols, $\mathbf{1}$ epimerizes to the corresponding cis-aroylcyclohexanecarboxylic acid, as in the present case, when, with two exceptions ($\mathbf{3 c}$ and $\mathbf{6}$), compounds containing a cis $A-B$ ring annelation were formed. This presumes the trans \rightarrow cis inversion of the starting 1 , which took place only partly in the reactions with trans-2-aminocyclohex-4-enemethanol and di-exo-3-aminobicyclo[2.2.1]hexane-2-methanol, where compounds with trans $A-B$ ring annelation could also be isolated. Our results show that, instead of the frequent cis \rightarrow trans process, trans \rightarrow cis isomerization can also occur. It follows that, in syntheses starting either from cis- or from transaroylcyclohexanecarboxylic acids, isomerization always has to be taken into account.

Table 1 Characteristic IR frequencies ${ }^{a}$ and ${ }^{1} \mathrm{H}$ NMR data ${ }^{b}$ relevant to stereostructures ${ }^{c}$ of compounds 2, 3a-c, 4a,b, and 5-10 ${ }^{d}$

			$\mathrm{CH}_{2}(13)^{f}$		$\mathrm{CH}_{2}(7)^{g}$		Isoindolone moiety			Oxazine r	ring			Ph Pos. 1 H-2,6
Compound	$v_{\mathrm{C}=\mathrm{O}}$ band	$v_{\mathrm{C}-\mathrm{O}}$ band e	$2 \times \mathrm{d}$	$\mathrm{d}(2 \times 1 \mathrm{H})$	$\sim \mathrm{d}(1 \mathrm{H})$	dq (1H)	$3 \mathrm{a}-\mathrm{H}^{\text {h }}$	$5-\mathrm{H}^{i}$	$7 \mathrm{a}-\mathrm{H}^{k}$	$\mathrm{CCHC}^{\text {m }}$	NCH^{n}	OCH_{2}		
2	1706	1027		-	0.72	0.92	3.06	2.33	2.14	2.02	4.40	3.47	3.86	7.55
3 a	1702	1048		-	1.71	2.15	2.55	$\sim 2.4{ }^{r}$	2.26	2.02	3.44	3.18	3.72	
3b	1718	1034		-	0.84	1.06	3.07	2.43	2.27	$\sim 1.84{ }^{r}$	3.74	3.46	4.04	7.65
3 c	1699	1061		-	0.68	$\sim 1.75{ }^{r}$	$\sim 1.87^{r}$	3.21	$\sim 2.2{ }^{\text {r }}$	2.04	$\sim 3.3{ }^{\text {r }}$	$3.28{ }^{\text {r }}$	3.75	~ 6.9
4 a	1673	3323		-	$\sim 1.55{ }^{\text {r }}$	$\sim 2.1{ }^{\text {r }}$	2.64	$\sim 2.5^{r}$	2.24	-	-	-		
4b	1686	3313		-	0.75	0.87	3.02	2.30	2.10	-	-	-		7.57
5	1702	1001	$\sim 1.34{ }^{r}$	r 1.51	$\sim 1.3^{r}$	$\sim 2.15{ }^{r}$	2.87	2.49	2.35	$\sim 2.40^{r}$	3.91	3.43	3.81	
6	1695	1046	1.27	1.47	0.56	~ 1.0	$\sim 2.14{ }^{r}$	3.18	$\sim 2.14^{r}$	2.34	4.01	3.64	3.87	7.44
7	1707	1030	0.72		~ 0.94		$\sim 2.35{ }^{r}$	2.49	3.01	1.99	4.16	3.45	3.89	7.48
8	1702	1010	0.91	1.01	$\sim 1.4{ }^{r}$	$\sim 2.15{ }^{\text {r }}$	2.66	2.50	2.35	2.15	3.80	3.07	3.89	~ 7.57
9	1697	1029	0.97	1.14	1.30	2.06	$\sim 2.4{ }^{\text {r }}$	2.65	$\sim 2.3{ }^{\text {r }}$	1.95	3.57	3.01	4.03	~ 7.58
10	1710	1041	0.85	$\sim 1.07{ }^{r}$	~ 1.05		3.02	2.58	2.48	2.58	4.07	3.48	4.13	7.53

${ }^{a}$ In KBr discs $\left(\mathrm{cm}^{-1}\right)$. Further bands: $\gamma \mathrm{C}_{\mathrm{Ar}} \mathrm{H}: 750 \pm 20, \gamma \mathrm{C}_{\mathrm{Ar}} \mathrm{C}_{\mathrm{Ar}}: 704 \pm 6 .{ }^{b}$ In CDCl_{3} solution at 500 MHz . Chemical shifts in ppm ($\delta_{\mathrm{Me}, \mathrm{Si}}=0 \mathrm{ppm}$), coupling constants in Hz . ${ }^{c}$ Only signals of $\mathrm{CH}_{2}, \mathrm{CH}$ and aromatic hydrogens of importance in the structure determinations are given. ${ }^{d}$ Assignments were supported by HMQC and NOEDIF measurements; also by 2D-COSY experiments for 2, 3a,b 4a and 5. ${ }^{e} v \mathrm{NH}$ band for 4a,b. ${ }^{f}$ AB-type spectrum, $J: 9.5,10.5$ for $\mathbf{8}$; singlet-like signal (2 H) for $\mathbf{7}, \delta \mathrm{H}($ exo $)<\delta \mathrm{H}\left(\right.$ endo) for $\mathbf{5}, \mathbf{6}$ and $\mathbf{8}$ and the relative shifts are reversed for $\mathbf{9}$ and $\mathbf{1 0}{ }^{g}$ The doublet-like signal with coalesced fine structure of $7-\mathrm{H}_{\mathrm{eq}}$ is downfield ($\mathbf{3 a}, \mathbf{c} \mathbf{4 a}, \mathbf{8}$ and $\mathbf{9}$) or upfield $(\mathbf{2}, \mathbf{3 b}, \mathbf{4 b}, \mathbf{6})$ to dq $(J \approx 4$ and $3 \times 12)$ signal of $7-\mathrm{H}_{\mathrm{ax}}$; these two signals are coalesced for $\mathbf{7}$ and 10 and both $\mathbf{5}, \mathbf{8}$ or the downfield/upfield one ($\mathbf{3 c}, \mathbf{6} / \mathbf{4 a}$) is overlapped with other signals. $\delta 4-\mathrm{H}_{\mathrm{ax}}: 1.55 \pm 0.3$, $4-\mathrm{H}_{\mathrm{eq}}: 2.45 \pm 0.15,6-\mathrm{H}_{\mathrm{ax}}: 1.3 \pm 0.1$ (1.75 and 1.68 for $\mathbf{3 c}$ and $\mathbf{6}$, resp.), $\mathrm{H}-6_{\mathrm{eq}}: 1.78 \pm 0.18$ (2.16 for $\mathbf{3 c}, \mathbf{6}$). The CH_{2} and CH signals of ring $D(\mathbf{2}, \mathbf{3 a - c})$, $C(\mathbf{4 a}, \mathbf{b})$ and $D-E(\mathbf{5 - 1 0})$ (absent from this table) are in the expected shift intervals. ${ }^{h}$ Triplet, $J \approx 5 \mathrm{~Hz}(\mathbf{2}, \mathbf{3 a}, \mathbf{b}, \mathbf{4 a}, \mathbf{b}, \mathbf{5}, \mathbf{7 - 9})$, quartet, $J \approx 7 \mathrm{~Hz}(\mathbf{1 0})$. ${ }^{i}$ Triple triplet, $J \approx 12$ and 4 Hz , broad signal with coalesced fine structure, half signal width $5 \mathrm{~Hz}(\mathbf{3 c}, \mathbf{6})$. ${ }^{k}$ Triple doublet, $J \approx 12$ and $6 \mathrm{~Hz}(\mathbf{2}, \mathbf{3 a}, \mathbf{b}$, $\mathbf{4 a , b}, \mathbf{5}, \mathbf{8})$, quartet, $J \approx 8.4 \mathrm{~Hz}(\mathbf{1 0}) .{ }^{m}$ Broad signal with coalesced fine structure, tq, $J=11.1$ and $4.8 \mathrm{~Hz}(\mathbf{3 a}), \mathrm{q}, J=9.6 \mathrm{~Hz}\left(\mathbf{7}\right.$, 9). ${ }^{n}$ Triple doublet, $J \approx 13$ and $5 \mathrm{~Hz}(\mathbf{2}), \mathrm{dt}, J \approx 11$ and $5 \mathrm{~Hz}(\mathbf{3 a}, \mathbf{b}), \mathrm{d}, J=11.0(\mathbf{5}, \mathbf{6}), 8.8 \pm 0.4 \mathrm{~Hz}(\mathbf{7}-\mathbf{1 0}) ;{ }^{\circ}$ Triplet and dd (t is the upfield signal, except for $\mathbf{2}$ and $\mathbf{6}$), $J \approx 12$ and $8 \mathrm{~Hz}(\mathbf{5} \mathbf{- 1 0})$, for $\mathbf{2}$ and 3a-c: 11 and $4.5 \mathrm{~Hz} .^{p}$ The signals of the two phenyl rings in Pos. 1 and 5 appear in the interval $7.25 \pm 0.2 \mathrm{ppm}$, except for those given in this column. The 1-phenyl signals are broadened for $\mathbf{3 c}, \mathbf{5}, \mathbf{8}$ and $\mathbf{9}$. ${ }^{r}$ Overlapping signals.

Scheme 1

Structure

The constitutions of the compounds follow straightforwardly from the spectral data (Tables 1 and 2). Determination of the stereostructures, however, is a difficult task, due to the presence of the $4(\mathbf{4 a}, \mathbf{b}), 6(\mathbf{2}, \mathbf{3 a}-\mathbf{c})$ or $8(\mathbf{5}-\mathbf{1 0})$ centres of asymmetry.

For 3a-c, we have succeeded in separating three homogeneous diastereomers; the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR measurements point to structures differing partly in the $A-B$ ring annelation (which is cis for $\mathbf{3 a}$ and $\mathbf{3 b}$, and trans for $\mathbf{3 c}$) and in the relative position of the 1-phenyl group and the annelational $3 \mathrm{a}, 7 \mathrm{a}-\mathrm{H}$
(cis in 3a, trans in 3b and cis to 3a-H and trans to 7a-H in 3c).§ The $C-D$ annelation is trans for all three isomers, but the 1-phenyl substituent on the oxazine ring is cis-oriented to the NCH in 3a and 3c, and trans to it in 3b. The 5-phenyl remains cis to $3 \mathrm{a}-\mathrm{H}$, but this means an equatorial position in $\mathbf{3 a}$ and $\mathbf{3 b}$, and an axial one in $\mathbf{3 c}$.

The $A-B$ annelation of these structures (Fig. 1) is supported by the C-7a chemical shift, which is significantly higher (53.0

[^0]Table $2{ }^{13} \mathrm{C}$ NMR chemical shifts ${ }^{a}$ of compounds 2, 3a-c, 4a,b and 5-10 ${ }^{b}$

	Isoindole moiety								Oxazinonorbornane/ene moiety ${ }^{e}$								$\text { Ph Pos. } 1$$\mathrm{C}-1^{c}$	$\begin{aligned} & \text { Ph Pos. } 5 \\ & \mathrm{C}-1^{c} \end{aligned}$
Compound	C-1	C-3	C-3a	C-4	C-5	C-6	C-7	C-7a	C-4'	C-4a'	C-5'	C-6'	C-7'	C-8'	C-8a'	C-9'		
2	95.6	182.8	42.3	31.2	41.0	31.4	28.0	44.6	63.2	34.9	27.8	21.6	26.2	28.7	54.4	-	139.3	146.8
3 a	95.2	175.1	40.7	31.0	40.9	31.2	25.1	46.0	66.8	37.0	26.4	124.5	126.2	29.7	54.7	-	140.4	147.1
3b	94.9	183.2	42.1	31.5	41.1	31.4	28.2	44.9	69.0	32.0	29.6	125.2	126.3	33.1	56.3	-	142.6	146.8
3c	96.0	175.4	39.9	31.5	36.8	29.0	23.3	53.0	67.1	37.1	26.5	124.3	126.3	29.3	54.7	-	135.4	144.4
4 a	79.6	174.0	39.7	30.8	40.0	31.2	24.9	46.0	40.6	26.2	-	-	-	-	37.8	-	141.7	146.7
4b	81.6	178.5	42.6	$31.4{ }^{\text {d }}$	41.0	$31.4{ }^{\text {d }}$	27.6	43.9	41.1	26.5	-	-	-	-	39.7	-	139.1	146.8
5	93.9	179.8	39.5	$30.9{ }^{\text {d }}$	40.7	$30.9{ }^{\text {d }}$	25.1	50.7	62.9	33.0	38.0	24.0	22.1	42.1	56.1	37.8	142.3	147.1
6	94.4	179.6	38.2	31.5	36.8	28.7	23.8	56.5	62.4	32.7	38.6	23.9	22.1	42.0	54.3	38.0	137.8	144.4
7	95.3	182.2	40.7	$30.7{ }^{\text {d }}$	39.7	30.1	26.4	44.6	64.5	39.0	39.6	27.5	$30.7{ }^{\text {d }}$	42.7	57.4	35.4	139.3	146.3
8	93.4	176.8	39.2	30.8	40.7	31.0	25.0	49.9	64.1	$39.0{ }^{\text {d }}$	$39.0{ }^{\text {d }}$	28.0	28.6	43.4	56.0	34.7	142.4	147.1
9	93.3	177.3	39.6	30.8	40.7	30.9	25.0	44.1	66.8	31.7	50.0	136.4	137.3	48.5	52.5	44.6	142.3	147.1
10	95.3	182.0	40.4	30.3	39.2	29.6	25.7	44.5	66.9	29.7	44.8	136.0	139.7	47.9	54.3	45.1	139.7	146.0

${ }^{a}$ In ppm $\left(\delta_{\mathrm{Me}, \mathrm{Si}}=0 \mathrm{ppm}\right)$ at 125.7 MHz . Solvent: $\mathrm{CDCl}_{3} .{ }^{b}$ Assignments were supported by DEPT, HMQC and, except for 4a, $\mathbf{5}$ and $\mathbf{6}, \mathrm{HMBC}$ measurements. ${ }^{c}$ Further lines of the phenyl group in Pos. 1 (broad or doubled C-2,6 and C-3,5 signals for 3b,c, 4b, 5-8 and 10), C-2,6: 128.0 ± 1.5, C-3,5: 128.3 ± 0.5, C-4: 128.8 ± 0.7 and in Pos. 5: C-2,6: $127.2 \pm 0.1, \mathrm{C}-3,5: 128.8 \pm 0.1, \mathrm{C}-4: 126.3 \pm 0.3$. ${ }^{d}$ Overlapping lines. ${ }^{e}$ Numbering refers to oxazine before fusion.

3a

2, 3b
$\mathrm{Q}=\mathrm{CH}_{2}-\mathrm{CH}_{2}(\mathbf{2})$
$\mathrm{Q}=\mathrm{CH}=\mathrm{CH}(\mathbf{3 b})$

Fig. 1 Stereostructures of compounds $\mathbf{2}$ and $\mathbf{3 a}-\mathbf{c}$.
$\mathrm{ppm})$ in $\mathbf{3 c}$ than in $\mathbf{3 a}$ and $\mathbf{3 b}$ (46.0 and 44.9 ppm), due to the field effect ${ }^{15}$ in the cis $\mathbf{3 a}$ and $\mathbf{3 b}$, manifested above all in the upfield shifts in the lines of the annelated carbons. In 3c, this difference is not observable for $\mathrm{C}-3 \mathrm{a}$, because of the analogous effect of the 5 -phenyl group in the 1,3-diaxial position. While $7 \mathrm{a}-\mathrm{H}$ retains its axial orientation and hence has a similar chemical shift ($\sim 2.25 \mathrm{ppm}$) in all three isomers, the upfield shift of $3 \mathrm{a}-\mathrm{H}$ in $\mathbf{3 c}$ (by 0.68 and 1.2 ppm as compared to $\mathbf{3 a}$ and $\mathbf{3 b}$) clearly confirms its axial position, in contrast with $\mathbf{3 a}$ and $\mathbf{3 b}$, where $3 \mathrm{a}-\mathrm{H}$ is equatorial. The shift difference is of about the expected ${ }^{16 a}$ magnitude ($\sim 0.6 \mathrm{ppm}$) for $\mathbf{3 a}$ and $\mathbf{3 b}$, while it is roughly double this for the pair $\mathbf{3 a}$ and $\mathbf{3 c}$. This can be explained by the cumulative anisotropic effects of the 1- and 5 -phenyl rings, ${ }^{16 b}$ as can be seen from the $3 \mathrm{a}-\mathrm{H}$ shifts measured for $\mathbf{3 a}$ and $\mathbf{3 b}$: the anisotropy results in an shift upfield by 0.52 ppm in 3 a , where $3 \mathrm{a}-\mathrm{H}$ lies above the plane of the 1 -phenyl ring.

As concerns the orientation of the 5-phenyl group, the triple triplet splitting of the $5 \mathrm{a}-\mathrm{H}$ signal in $\mathbf{3 b}$ (by ~ 14 and 4 Hz) confirms its axial position (and consequently the presence of the equatorial 5-phenyl ring) due to the two large diaxial couplings. ${ }^{17}$ For $\mathbf{3 c}$, the narrow shape of the broadened $5-\mathrm{H}$ signal and its downfield shift (by $\sim 0.8 \mathrm{ppm}$) prove the change in the position of the 5 -phenyl as compared to $\mathbf{3 b}$, and suggest its axial orientation. Though the splits of the $5-\mathrm{H}$ signal in 3a cannot be determined, the very similar shifts of $5-\mathrm{H}$ and $\mathrm{C}-5$ in 3a and 3b confirm the unaltered equatorial (cis to $3 \mathrm{a}-\mathrm{H}$) position of the 5-phenyl in 3a.

For the $C-D$ annelation, the double triplet splitting of the ${ }^{1} \mathrm{H}$ NMR signal of the NCH group by two large diaxial couplings is decisive for $\mathbf{3 a}$ and $\mathbf{3 b}$. In consequence of the signal overlap, establishment of the trans $C-D$ annelation in the same way is not possible for $3 \mathbf{c}$. However, the practically identical ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shifts of the annelated CH 's for $\mathbf{3 a}$ and $\mathbf{3 c}$ illustrate the analogous steric structures in this part of the isomeric molecules. Again, the differences in these shifts for the pairs 3a,b and $\mathbf{3 c}, \mathbf{b}$ can be interpreted only in terms of the different positions of the 1-phenyl and the annelated CH 's, because a change in $C-D$ annelation for $\mathbf{3 a}$ and $\mathbf{3 b}$ was excluded. Accordingly, the anisotropic shielding of the phenyl ring is manifested in upfield shifts of the signals of the CCHC and NCH hydrogens in 3b and 3a,c, respectively, as a result of the 1,3-diaxial position of the phenyl ring and the above H's in the respective isomers.

Consequently, the following configurations can be considered proved: for 3a $1 R^{*}, 3 \mathrm{a} R^{*}, 5 S^{*}, 7 \mathrm{a} S^{*}, 8 \mathrm{a} R^{*}, 12 \mathrm{a} S^{*}$; for 3b $1 S^{*}, 3 \mathrm{a} R^{*}, 5 S^{*}, 7 \mathrm{a} S^{*}, 8 \mathrm{a} R^{*}, 12 \mathrm{a} S^{*}$ and for $\mathbf{3 c} 1 R^{*}, 3 \mathrm{a} R^{*}$, $5 S^{*}, 7 \mathrm{a} R^{*}, 8 \mathrm{a} R^{*}, 12 \mathrm{a} S^{*}$. The presumed stereostructures were confirmed by NOEDIF measurements, ${ }^{16 c, 18}$ the responses relevant to the possible steric arrangements are given in Table 3.

The structures of $\mathbf{2 , 4 a , b}, \mathbf{5}-\mathbf{1 0}$ were determined similarly. For 2, the triple doublet split (by 12.8, 6.4 and 6.4 Hz) of the $7 \mathrm{a}-\mathrm{H}$ signal is proof of the cis $A-B$ annelation, where $7 \mathrm{a}-\mathrm{H}$ is axial and the 5 -phenyl is equatorial (this means cis orientation to $3 \mathrm{a}-\mathrm{H})$, as shown by the triple triplet split involving two diaxial couplings for $5 \mathrm{a}-\mathrm{H}$. The very similar $\mathrm{C}-3 \mathrm{a}, 7 \mathrm{a}$ and $3 \mathrm{a}, 7 \mathrm{a}-\mathrm{H}$ shifts, the separation of the $2-\mathrm{H}$ and $6-\mathrm{H}$ signals of the 1-phenyl ring (one of them is downfield-shifted to $c a .7 .6 \mathrm{ppm}$) and the separation or broadening of the corresponding carbon signals (C-2,6 and also C-3,5) due to hindered rotation are all evidence in favour of analogous stereostructures for $\mathbf{2}$ and $\mathbf{3 b}$ in this part of the molecule. The dramatic downfield shift of the ${ }^{1} \mathrm{H}$ signal of the NCH group (from 3.74 to 4.40 ppm) and its triple doublet splitting with only one large diaxial coupling suggest cis $C-D$ annelation in 2 , with changed orientation of the NCH as compared to $\mathbf{3 b}$. This means the cis position of the $C-D$ annelational H's relative to the 1 -phenyl ring. The configuration is $1 S^{*}, 3 \mathrm{a} R^{*}, 5 S^{*}, 7 \mathrm{a} S^{*}, 8 \mathrm{a} R^{*}, 12 \mathrm{a} R^{*}$.

For the isomeric pair $\mathbf{4 a}$ and $\mathbf{4 b}$, the stereostructures are analogous to those of $\mathbf{3 a}$ and $\mathbf{3 b}$. Thus, $\mathbf{4 a}, \mathbf{b}$ involve cis $A-B$ annelation and an equatorial 5-phenyl cis to $3 \mathrm{a}, 7 \mathrm{a}-\mathrm{H}$. The only difference is in the 1-phenyl orientation, which is cis to $3 \mathrm{a}, 7 \mathrm{a}-\mathrm{H}$ in $\mathbf{4 a}$, and trans in $\mathbf{4 b}$. The anisotropy of the near-lying 1-phenyl ring to the 7-methylene group is revealed in the upfield shifts of the signals of the latter H's in $\mathbf{4 b}(0.75$ and 0.87 ppm$)$ relative to $\mathbf{4 a}(\sim 1.55$ and 2.1 ppm$)$, similarly as in 3b (0.84 and 1.06 ppm) relative to $\mathbf{3 a}$ (1.71 and 2.15 ppm).

Table 3 Results of NOE experiments on compounds 2, 3a-c, 4a,b and 5-10 ${ }^{a}$

Compound	Saturated signal	Responding signals					
		$\mathrm{H}_{\text {ortho }}(1-\mathrm{Ph})$	7a-H	$7-\mathrm{H}_{\mathrm{ax}}$	$5-\mathrm{H}_{\mathrm{ax}}$	$8-\mathrm{H}_{\mathrm{ax}}$	13-H (endo)
2	7a-H	$+{ }^{c}$					
2, 3b	3a-H		$+$				
	$5-\mathrm{H}_{\mathrm{ax}}$			$+$			
	$7-\mathrm{H}_{\mathrm{ax}}$				$+$		
3a	$3 \mathrm{a}-\mathrm{H}, 7 \mathrm{a}-\mathrm{H}$	$+$					
	12a-H	+				+	
3b	$7-\mathrm{H}_{\mathrm{ax}}$	$+{ }^{c}$					
3c	$7-\mathrm{H}_{\mathrm{ax}}$	$+{ }^{b}$					
4 a	3a-H	$+$					
	$7 \mathrm{a}-\mathrm{H}^{c}, 12-\mathrm{H}_{\mathrm{ax}}$	$+$					
4b	$5-\mathrm{H}_{\mathrm{ax}}$			$+$			
	$7 \mathrm{a}-\mathrm{H}$	$+^{c}$					
5	$3 \mathrm{a}-\mathrm{H}$	$+$					
	8a-H						$+$
	$10-\mathrm{H}$					+	
	$12 \mathrm{a}-\mathrm{H}$						$+$
6	$7-\mathrm{H}_{\mathrm{ax}}$	$+^{c}$					
	$8 \mathrm{a}-\mathrm{H}$						$+$
	$12 \mathrm{a}-\mathrm{H}$						$+$
7	$5-\mathrm{H}_{\mathrm{ax}}$			$+$			
	$8-\mathrm{H}_{\mathrm{ax}}$	+					$+$
8	$8-\mathrm{H}_{\mathrm{ax}}^{\mathrm{ax}}$						$+$
	13-H (endo)					$+$	
9	3a-H	$+$					
	$8-\mathrm{H}_{\mathrm{ax}}$						$+$
	13-H (endo)	$+$					
10	$3 \mathrm{a}-\mathrm{H}$	$+{ }^{b}$					
	$8-\mathrm{H}_{\mathrm{ax}}$						$+$
	$11-\mathrm{H}$	$+$					

${ }^{a}$ Interacting pairs showing only trivial effects (NOE between the geminal or vicinal hydrogens) are not included in this table. Only responses relevant for the stereostructures are given. ${ }^{b}$ Responding signal: $\mathrm{H}_{\text {ortho }}(5-\mathrm{Ph}) .{ }^{c} \mathrm{~A}$ response of only one of the ortho-hydrogens was observed.

The pentacyclic norbornane/ene ${ }^{〔}$ derivatives 5-10 have 8 centres of asymmetry; in theory, therefore, 32 , but in practice 16 diastereomers are to be considered. (The rigid norbornene moiety reduces the number of possible diastereomers.) For the part that is common (rings A, B and C with the 1 -phenyl substituent) with the tetracycles $\mathbf{2}$ and $\mathbf{3}$ and the tricycles $\mathbf{4}$, it is easy to select the stereostructure which is analogous to that of the latter. Additionally, it is necessary to elucidate the diendo or di-exo annelation of the norbornane/ene moiety; our experience to date suggests that this probably remains unchanged during the synthesis. Finally, the positions of the bridging CH_{2} and 1-phenyl group should also be determined.

Thus, the $A-B$ annelation is cis and trans in $\mathbf{5}$ and $\mathbf{6}$, respectively, and the 5 -phenyl group is equatorial (cis to $3 \mathrm{a}, 7 \mathrm{a}-\mathrm{H}$) in 5 and axial (cis to $3 \mathrm{a}-\mathrm{H}$, but trans to $7 \mathrm{a}-\mathrm{H}$) in $\mathbf{6}$ (cf. the shifts of $5-\mathrm{H}$ and $\mathrm{C}-7 \mathrm{a}$ or the splittings of the former signal). In 5 , the 1-phenyl ring is cis to $3 \mathrm{a}, 7 \mathrm{a}-\mathrm{H}$, as in 3 a , while $\mathbf{6}$ has a stereostructure analogous to that of 3c: 1-phenyl is cis to 3a-H (Table 3). The di-endo annelation remains unaltered in both $\mathbf{5}$ and $\mathbf{6}$, as confirmed by the NOEDIF's between the annelational H's in the oxazine ring and the endo- H of the bridging CH_{2} group in the norbornane moiety (Table 3, Fig. 2). Direct evidence of the position of the bridging CH_{2} was not observed. Consideration of molecular models and the chemical shifts of the $\mathrm{CH}_{2} \mathrm{H}^{\prime}$ s in the bicycloalkane ring as compared to those in the parent compound (norbornane ${ }^{19}$) suggest that the bridging CH_{2} and the 1-phenyl are on the opposite side of the molecular skeleton in 5 and 6.

The di-exo counterparts 7 and $\mathbf{8}$ have a cis $A-B$ ring and an equatorial 5 -phenyl group (cis to $3 \mathrm{a}-\mathrm{H}$ and $7 \mathrm{a}-\mathrm{H}$) and they differ in the C-1 configuration. The di-exo annelation of the norbornane moiety to the oxazine ring is obvious, among

[^1]

Fig. 2 Stereostructure and NOE's relevant to structure in 6.
others from the ${ }^{13} \mathrm{C}$ chemical shifts, ${ }^{20,21}$ and is supported by a NOE between $8-\mathrm{H}_{\mathrm{ax}}$ and $13-\mathrm{H}($ endo $)$.
In 7, the closeness of the $7-\mathrm{CH}_{2}$ group and the 1-phenyl ring is revealed in the upfield shifts of both $6-\mathrm{H}$ signals (0.94 ppm). A similar anisotropic effect of the latter on $13-\mathrm{CH}_{2}$ is also observed, in accordance with the cis position of these moieties (1-phenyl and $13-\mathrm{CH}_{2}$) and the unaltered di-exo annelation. The downfield-shifted $12 \mathrm{a}-\mathrm{H}$ signal (at 4.16 ppm , while it is 3.80 ppm for $\mathbf{8}$) is further support of this arrangement, involving $12 \mathrm{a}-\mathrm{H}$ coplanar with the carbonyl group. In accordance with this, the rotation of the 1 -phenyl group is restricted (as suggested by the molecular model), and hence the C-2,6 and $2,6-\mathrm{H}$ signals in 7 and the $\mathrm{C}-3,5$ and $3,5-\mathrm{H}$ signals in $\mathbf{8}$ are doubled.

The similar C-3a,5,7a and 3a,5,7a-H shifts and the splits of the 3a,5-H signals in $\mathbf{8}$ and 3a suggest cis $A-B$ annelation and an equatorial (cis to $3 \mathrm{a}-\mathrm{H}$) position for the 5 -phenyl group. The anisotropy of the close-lying 1-phenyl ring causes upfield shifts of the $3 \mathrm{a}-\mathrm{H}$ and $12 \mathrm{a}-\mathrm{H}$ signals as compared to those for 7 . The bridging $13-\mathrm{CH}_{2}$ is trans to the 1-phenyl, in contrast with 7 , and consequently the $13-\mathrm{H}$ (endo) signal is downfield-shifted by 0.3 ppm in the absence of the anisotropic shielding of the 1-phenyl ring. The downfield shift of the $11-\mathrm{H}$ signal (2.57 ppm ,

whereas it appears at about 2.35 ppm for 7) is due to the anisotropy of the coplanar carbonyl ${ }^{16 d}$ in the preferred conformation of the oxazine ring (cf. the split by 12 Hz of the $8_{a x}, 8 a-H$ coupling).

From the $\mathrm{C}-3 \mathrm{a}, 7 \mathrm{a}$ and $3 \mathrm{a}, 7 \mathrm{a}-\mathrm{H}$ shifts and the multiplicities of the ${ }^{1} \mathrm{H}$ NMR signals, the two di-exo norbornene compounds 9 and $\mathbf{1 0}$ involve cis $A-B$ annelation. The two large splits of the $5-\mathrm{H}$ signal characteristic of diaxial couplings demonstrate the equatorial (cis to $3 \mathrm{a}-\mathrm{H}$) position of the 5 -phenyl group. The anisotropy of the close-lying 1-phenyl ring is reflected in the upfield shifts of the $3 \mathrm{a}-\mathrm{H}$ and $12 \mathrm{a}-\mathrm{H}$ signals in 9 (by 0.37 ppm) relative to those in $\mathbf{1 0}$, in which the ring and the H's in question are far from each other. Mutual NOE's between 13-H (endo) and the ortho-H's of the 1-phenyl ring indicate the cis position of $13-\mathrm{CH}_{2}$ and the 1-phenyl group in $\mathbf{9}$ (Table 3). The responses of the ortho-H's of the 1 -phenyl ring when the $11-\mathrm{H}$ signal is irradiated in a NOEDIF experiment, together with the similar shifts of the $13-\mathrm{CH}_{2} \mathrm{H}$'s to those measured for 9 , rendered probable the cis arrangement of the $13-\mathrm{CH}_{2}$ group and the 1-phenyl substituent in 10. The latter structure was confirmed by X-ray measurements. As compound $\mathbf{1 0}$ is a racemate, only one of the enantiomers is shown in Fig. 3.

Fig. 3 Perspective view of 10. Atoms are represented by thermal ellipsoids (at a 50% probability level); only non-hydrogens are labelled.

Experimental

The IR spectra were determined in KBr discs on a Bruker IFS55 FT-spectrometer controlled by Opus 2.0 software. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} solution in 5 mm tubes at RT, on a Bruker DRX-500 FT spectrometer at 500.13 $\left({ }^{1} \mathrm{H}\right)$ and $125.76\left({ }^{13} \mathrm{C}\right) \mathrm{MHz}$, respectively, using the deuterium signal of the solvent as the lock and TMS as internal standard. DEPT spectra ${ }^{22}$ were run in a standard way, ${ }^{23}$ using only the $\theta=135^{\circ}$ pulse to separate the $\mathrm{CH} / \mathrm{CH}_{3}$ and CH_{2} lines phased up and down, respectively. For NOEDIF measurements, ${ }^{16 c, 18}$ the standard Bruker microprogram NOEMULT to generate NOE was used. The 2D-COSY ${ }^{24 a}$ and HMQC spectra ${ }^{24 b}$ were obtained by using also the standard Bruker pulse programs.

Crystal data for 10

$\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{2}, M: 411.52$, monoclinic, space group $P 2_{1} / a, a=$ 18.363(1) $\AA, b=6.321(1) \AA, c=19.333(2) \AA, \beta=105.18(1)^{\circ}$, $V=2165.7(4) \AA^{3}, T=293(2) \mathrm{K}, Z=4, \mathrm{~F}(000)=880, D \mathrm{x}=1.262$
$\mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71070 \AA, \mu=0.078 \mathrm{~mm}^{-1}, R=0.0481$.

Data collection and processing

X-Ray data were collected on an Enraf-Nonius CAD4 diffractometer (graphite monochromator; Mo-K α radiation, $\lambda=0.71070 \AA$) at 293(2) K, using ω scans. A total of 5703 reflections were collected, of which 5241 were unique $[R($ int $)=$ $0.0090, R(\sigma)=0.0727] ; 2804$ reflections were $>2 \sigma(I)$. Completeness to $2 \theta=0.987$.

The structure was solved by direct methods (SHELXS97). ${ }^{25}$
Anisotropic full-matrix least-squares refinement on F^{2} for all non-hydrogen atoms yielded $R 1=0.0481$ and $w R 2=0.1228$ for $2804[I>2 \sigma(I)]$ and $R 1=0.1135$ and $w R 2=0.1398$ for all (5241) intensity data (goodness-of-fit $=0.797$; the maximum and mean shift/esd $=0.001$ and 0.000).

Number of parameters $=280$. The maximum and minimum residual electron densities in the final difference map were 0.193 and $-0.214 \mathrm{e}^{\AA^{-3}}$.

Hydrogen atom positions were located on stereochemical grounds and refined with fixed geometry, each riding on a carrier atom, with an isotropic displacement parameter amounting to 1.3 times the value of the equivalent isotropic displacement parameter of the atom to which they are attached.

Structure refinements, including final geometric calculations, were carried out with SHELXL97. ${ }^{26}$ Fig. 3 was produced with ORTEP-III. ${ }^{27}$

Supplementary data relating to this article have been deposited with the Cambridge Crystallographic Data Centre. CCDC reference number 168898.

6a,9-Diphenyl-11-oxoperhydroisoindolo [2,1-a][3,1]benzoxazine 2, 6a,9-diphenyl-11(6aH)-0xo-1,4,4a,6b,7,8,9,10,10a,12a-decahydroisoindolo[1,2-a][3,1]benzoxazines 3a-c, 8,10b-diphenyl-6-oxoperhydropyrimido $[2,1-a]$ isoindoles $4 \mathrm{a}, \mathrm{b}$, 1,4-methano-6a,9-diphenyl-11-oxoperhydroisoindolo[2,1-a][3,1]benzoxazines 5-8, and 1,4-methano-6a,9-diphenyl-11(6aH)-oxo-1,4,4a,6b,7,8,9,10,10a,12a-decahydroisoindolo[2,1-a][3,1]benzoxazines 9 , 10 (General procedure)
A mixture of t-2-benzoyl- t-5-phenylcyclohexane- r-1-carboxylic acid $^{1} 1(3.0 \mathrm{~g} ; 0.01 \mathrm{~mol})$, aminoalcohol (1.3 g cis-2-aminocyclohexanemethanol or trans-2-aminocyclohex-4-enemethanol or 1.4 g di-endo- or di-exo-3-aminobicyclo[2.2.1]heptane-2-methanol or di-exo-3-aminobicyclo[2.2.1]hept-5-ene-2-methanol; 0.01 mol) and PTSA (0.05 g) in dry toluene ($30 \mathrm{~cm}^{3}$) was refluxed for 1 h , with the application of a water separator. After
the solvent had been evaporated off, the residue was dissolved in $\mathrm{CHCl}_{3}\left(5 \mathrm{~cm}^{3}\right)$, transferred to an aluminium oxide column (Acros, basic, $50-200 \mu$), and eluted with benzene ($300 \mathrm{~cm}^{3}$) for 4a, 5, $\mathbf{7}$ and 9 (monitoring by TLC, silica gel TLC aluminium sheets, solvent: benzene-EtOH-petroleum ether, bp $40-60^{\circ} \mathrm{C}$, 4:1:3, development with iodine, higher R_{f}) and then with EtOAc ($500 \mathrm{~cm}^{3}$) for $\mathbf{4 b}, \mathbf{6}, 8$ and $\mathbf{1 0}$ (lower R_{f} on TLC plate). For the separation of $3 \mathrm{a}-\mathbf{c}$, silica gel (Kieselgel 60 Merck, $0.040-0.063 \mathrm{~mm}$) was applied, with a mixture of EtOAc$\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane ($1: 1: 18$) as eluent $\left(1500 \mathrm{~cm}^{3}\right)$; the compounds appeared in the sequence $\mathbf{3 a}, \mathbf{3 b}$ and $\mathbf{3 c}$ (monitoring by TLC). The residues of the eluates were crystallized. Data on compounds 2-10 are listed in Table 4.

Acknowledgements

The authors are indebted to David Durham PhD for language polishing and to Mrs E. Csiszár-Makra for the typing of the manuscript. Grants OTKA T 25415, OTKA T 29651 and FKFP-0200/2000.

References

1 K. D. Klika, P. Tähtinen, M. Dahlqvist, J. A. Szabó, G. Stájer, J. Sinkkonen and K. Pihlaja, J. Chem. Soc., Perkin Trans. 2, 2000, 687.

2 P. Sohár, G. Stájer, K. Nagy and G. Bernáth, Magn. Reson. Chem., 1995, 33, 329.
3 P. Sohár, G. Stájer, A. E. Szabó and G. Bernáth, J. Mol. Struct., 1996, 382, 187.
4 F. Csende and G. Stájer, Heterocycles, 2000, 53, 1379.
5 G. Stájer, A. E. Szabó, G. Bernáth and P. Sohár, Heterocycles, 1994, 38, 1061.
6 V. Curran and A. Ross, J. Med. Chem., 1974, 17, 273.
7 W. J. Houlihan, US Pat., 3391 176, 1976 (Chem. Abstr., 1976, 84, 105630t).
8 A. Mertens, H. Zilch, B. König, W. Schäfer, T. Poll, W. Kampe, H. Seidel, U. Leser and H. Leinert, J. Med. Chem., 1993, 36, 2526.

9 D. Romo and A. I. Meyers, Tetrahedron, 1991, 47, 9503.
10 A. I. Meyers, M. Harre and R. Garland, J. Am. Chem. Soc., 1984 106, 1146.

11 I. G. Pojarlieff, R. Z. Mitova-Chernaeva, J. Blagoeva and B. J. Kurtev, C. R. Acad. Bulg. Sci., 1968, 21, 131 (Chem. Abstr., 1968, 69, 51283).

12 G. Stájer, F. Csende, G. Bernáth and P. Sohár, Heterocycles, 1994, 37, 883.
13 G. Stájer, Zs. Szöke-Molnár, G. Bernáth and P. Sohár, Tetrahedron, 1990, 46, 1943.
14 S. Frimpong-Manso, K. Nagy, G. Stájer, G. Bernáth and P. Sohár, J. Heterocycl. Chem., 1992, 29, 221.

15 G. M. Grant and B. V. Cheney, J. Am. Chem. Soc., 1967, 89, 5315.
16 (a) P. Sohár, Nuclear Magnetic Resonance Spectroscopy, CRC Press, Boca Raton, FL, 1983, vol. 2, pp. 27-28; (b) P. Sohár, Nuclear Magnetic Resonance Spectroscopy, CRC Press, Boca Raton, FL, 1983, vol. 1, pp. 35-38 and vol. 2, p. 73; (c) P. Sohár, Nuclear Magnetic Resonance Spectroscopy, CRC Press, Boca Raton, FL, 1983, vol. 1, pp. 194-197; (d) P. Sohár, Nuclear Magnetic Resonance Spectroscopy, CRC Press, Boca Raton, FL, 1983, vol. 1, p. 32 and vol. 2, p. 61.
17 M. Karplus, J. Chem. Phys., 1959, 30, 11; M. Karplus, J. Chem. Phys., 1960, 33, 1842.
18 J. K. M. Sanders and D. J. Mersch, Prog. Nucl. Magn. Reson., 1982, 15, 353 and references cited therein.
19 E. Pretsch, T. Clerc, J. Seibl and N. Simon, Tabellen zur Strukturaufklärung organischer Verbindungen mit spektroskopischen Methoden, Springer Verlag, Berlin, 1976, p. H190.
20 P. Sohár, G. Stájer and G. Bernáth, Org. Magn. Reson., 1983, 21, 512-519.
21 P. Sohár, I. Pelczer, G. Stájer and G. Bernáth, Magn. Reson. Chem., 1987, 25, 584.
22 D. T. Pegg, D. M. Doddrell and M. R. Bendall, J. Chem. Phys., 1982, 77, 2745.
23 M. R. Bendall, D. M. Doddrell, D. T. Pegg and W. E. Hull, High Resolution NMR Spectra Editing and DEPT, Bruker, Karlsruhe, 1982.

24 (a) R. R. Ernst, G. Bodenhausen and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, UK, 1987, pp. 400-426; (b) R. R. Ernst, G. Bodenhausen and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, UK, 1987, pp. 471-479.
25 G. M. Sheldrick, SHELXS-97 Program for Crystal Structure Solution, University of Göttingen, Germany, 1997.
26 G. M. Sheldrick, SHELXL-97 Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
27 M. N. Burnett and C. K. Johnson, ORTEP-III, ORNL Report 6895, 1996.

[^0]: \S See compound $\mathbf{2}$ in Scheme 1 for the spectroscopic numbering.

[^1]: TT The IUPAC names for norbornane and norbornene are bicyclo [2.2.1]heptane and bicyclo[2.2.1]hept-2-ene, respectively.

